首页 > 科幻灵异 > 走进不科学 > 第二十五章 韩·数学鬼才·立(求追读啊啊啊啊啊啊!!!!!)

第二十五章 韩·数学鬼才·立(求追读啊啊啊啊啊啊!!!!!)(1/2)

目录

屋子里,徐云正在侃侃而谈:

“艾萨克先生,韩立爵士计算发现,二项式定理中指数为分数时,可以用ex = 1+x+x2/2!+x3/3!+……+xn/n!+……来计算。”

说着徐云拿起笔,在纸上写下了一行字:

当n=0时,ex>1。

“艾萨克先生,这里是从x0开始的,用0作为起点讨论比较方便,您可以理解吧”

小牛点了点头,示意自己明白。

随后徐云继续写道:

假设当n=k时结论成立,即ex>1+x/1!+x2/2!+x3/3!+……+xk/k!(x>0)

则ex-[1+x/1!+x2/2!+x3/3!+……+xk/k!]>0

那么当n=k+1时,令函数f=ex-[1+x/1!+x2/2!+x3/3!+……+x/]!(x>0)

接着徐云在f上画了个圈,问道:

“艾萨克先生,您对导数有了解么”

小牛继续点了点头,言简意赅的蹦出两个字:

“了解。”

学过数学的朋友应该都知道。

导数和积分是微积分最重要的组成部分,而导数又是微分积分的基础。

眼下已经时值1665年末,小牛对于导数的认知其实已经到了一个比较深奥的地步了。

在求导方面,小牛的介入点是瞬时速度。

速度=路程x时间,这是小学生都知道的公式,但瞬时速度怎么办?

比如说知道路程s=t2,那么t=2的时候,瞬时速度v是多少呢?

数学家的思维,就是将没学过的问题转化成学过的问题。

于是牛顿想了一个很聪明的办法:

取一个”很短”的时间段t ,先算算t= 2到t=2+t 这个时间段内,平均速度是多少。

v=s/t=(4t+t2)/t=4+t。

当t 越来越小,2+t就越来越接近2 ,时间段就越来越窄。

t 越来越接近0时,那么平均速度就越来越接近瞬时速度。

如果t小到了0 ,平均速度4+t就变成了瞬时速度4。

当然了。

后来贝克莱发现了这个方法的一些逻辑问题,也就是t到底是不是0。

如果是0,那么计算速度的时候怎么能用t做分母呢鲜为人...咳咳,小学生也知道0不能做除数。

到如果不是0,4+t就永远变不成4,平均速度永远变不成瞬时速度。

按照现代微积分的观念,贝克莱是在质疑limt0是否等价于t=0。

这个问题的本质实际上是在对初生微积分的一种拷问,用“无限细分”这种运动、模糊的词语来定义精准的数学,真的合适吗

贝克莱由此引发的一系列讨论,便是赫赫有名的第二次数学危机。

甚至有些悲观党宣称数理大厦要坍塌了,我们的世界都是虚假的——然后这些货真的就跳楼了,在奥地利还留有他们的遗像,也不知道是用来被人瞻仰还是鞭尸的。

这件事一直到要柯西和魏尔斯特拉斯两人的出现,才会彻底有了解释与定论,并且真正定义了后世很多同学挂的那棵树。

但那是后来的事情,在小牛的这个年代,新生数学的实用性是放在首位的,因此严格化就相对被忽略了。

这个时代的很多人都是一边利用数学工具做研究,一边用得出来的结果对工具进行改良优化。

偶尔还会出现一些倒霉蛋算着算着,忽然发现自己这辈子的研究其实错了的情况。

总而言之。

在如今这个时间点,小牛对于求导还是比较熟悉的,只不过还没有归纳出系统的理论而已。

徐云见状又写到:

对f求导,可得f'=ex-1+x/1!+x2/2!+x3/3!+……+xk/k!

由假设知f'>0

那么当x=0时。

f=e0-1-0/1!-0/2!-.-0/k+1!=1-1=0

所以当x>0时。

因为导数大于0,所以f>f=0

所以当n=k+1时f=ex-[1+x/1!+x2/2!+x3/3!+……+x/]!(x>0)成立!

最后徐云写到:

本章未完,点击下一页继续阅读。

书页 目录
返回顶部